Nuclear Magnetic Resonance Signals of Methyl Groups in Structural Determination of Triterpenes. 2α,3α- and 2β,3β-Dihydroxyolean-12-en-28-oic Acids

By H. T. CHEUNG* and T. C. YAN

(Department of Chemistry, University of Hong Kong, Hong Kong)

Summary Structures previously assigned to the two cis-diols from osmium tetroxide oxidation of methyl olean-2,12-dien-28-oate should be interchanged; 2α , 3α -dihydroxyolean-12-en-28-oic acid occurs in Shorea acuminata resin.

SEVERAL triterpene acids occur in the resin of Shorea acuminata (Dipterocarpaceae) one of which we show to be $2\alpha,3\alpha$ -dihydroxyolean-12-en-28-oic acid. Its methyl ester (Ia) (C₃₁H₅₀O₄, m.p. 296—299°, $[\alpha]_D + 58°$) readily forms an acetonide (Ic), m.p. 235—239°. In the mass spectrum of the acetonide are found peaks at m/e 511, 468, 453, and 409, due to loss from the molecular ion (526) of CH₃, acetone,¹ CO₂CH₃, or a combination of these. The most abundant ions are at m/e 262 and 203; these ions and others at m/e 189 and 133 are found also in the spectrum of the methyl ester (Ia). Such fragments are diagnostic² of a methyl olean-12-en-28-oate (II) or its ursane analogue, and result from a retro-Diels-Alder cleavage of ring $c.^{2}$ The oleanane skeleton is favoured since n.m.r. signals due to secondary methyl groups are not found.³

The diol methyl ester is in fact identical to one of two cis-2,3-diols^{4,5} resulting from osmium tetroxide oxidation of methyl olean-2,12-dien-28-oate (III). We have repeated the oxidation and show below that the structures (Ia) and (IVa) given earlier^{4,5} to these diols, m.p. 258—261° and 296—299° (lit.⁵ 278—282°), should be reversed.

N.m.r. frequencies of angular methyl groups in a triterpene skeleton are influenced by changes in substitution pattern, and the effects are normally additive.³ Applications of the generalization to structural determination have been demonstrated.³ The Table shows that the predicted methyl resonances for the $2\alpha, 3\alpha$ -diol (Ia) and for the $2\beta, 3\beta$ diol (IVa) are in excellent agreement with those measured for diols m.p. 296-299° and m.p. 258-261°, respectively.

The correctness of the conclusion is established as follows. Firstly the width at half-height $(w_1)^6$ of signals due to the C-2 hydrogen in the 2α , 3α -diol (Ia) (m.p. 296-299°) and its

	10	20			C-23	C-24	(Effect on) C-25	resonance C-26	frequenciesª C-27	C-29/30
Parent [®] (methyl olea	an-12-	en-28-	oate)	••	52.5	50	99.9	43.9	69	99·9/90
Effect ³ of 2α-OH	••				+2	+1.5	+1.5	-0.5	-0.2	-1
Effect ⁸ of 3α-OH	••	••	••		+6	+2	+0.5	ca. 0	ca. 0	ca. 0
Calc. for (Ia)	••		••		60.5	$53 \cdot 5$	57.5	43	68.5	$54 \cdot 5 / 55$
Found for diol m.p.	296-2	99°	••	••	60.5	51	56.5	42	68	54/55
Effect³ of 2α-OAc				••	+2.5	+2.5	+7.5	-0.5	-0.2	-1
Effect ⁸ of 3α-OAc			••		-1	+4	+0.5	ca. 0	ca. 0	ca. 0
Calc. for (Ib)					54	56.5	63.5	43	68.5	54.5/55
Found for diacetate of diol m.p. 296—299°					52	58.5	62	43	69.5	54/55
Effect ³ of 2β -OH					+1.5	+13	+19	+1	0	+0.5
Effect ⁹ of 3β -OH	••		••		+7	2	+0.5	+1	0	0
Calc. for (IVa)	••				61	61	75	45.5	69	56/56.5
Found for diol m.p.	258—	261°	••	••	60	60	73	44.5	67	$53 \cdot 5 / 55$
Effect ³ of 2β-OAc					+2 ^b	+10.5	+15.5	+1.5	0	0
Effect [®] of 3 ['] B-OAc	••		••		0	+3	+1	0	0	+0.5
Calc. for (IVb) Found for diacetate	 (m.p.		-231°) o	 f	$54 \cdot 5$	63.5	72	45	69	56/56.5
diol m.p. 258-26	50°			•••	54	63	71	45	67	54/54

^a In Hz from SiMe₄ as measured at 60 MHz in CDCl₃.

^b Value taken from ref. 8.

Corroborative results obtained for the corresponding diacetates are also shown. Diol m.p. 296-299° obtainable from Shorea acuminata is thus methyl 2α , 3α -dihydroxyolean-12-en-28-oate (Ia), and diol m.p. 258-261° is the 2β , 3β -analogue (IVa).

diacetate (Ib), is 21 and ca. 18 Hz; \dagger in the 2β , 3β -analogues (IVa and IVb) w_1 is 9 and ca. 8 Hz.[†] The C-2 hydrogen is thus axial in the former compounds and equatorial in the latter.6

Splitting in the C-3 hydrogen signal indicates that coupling between C-2 and C-3 hydrogens is 2-3 Hz in 2α , 3α -compounds and 4-5 Hz in 2β , 3β -compounds. Upon decoupling of the C-3 hydrogen in the naturally occurring $2\alpha, 3\alpha$ -diol (Ia), the multiplet near δ 3.9 due to the C-2 hydrogen simplifies to a four-line signal characteristic of the X part of an ABX spectrum (see Ia). $J_{AX} + J_{BM}$ as measured is 15 Hz, which is as expected? for ax-ax and ax-eq coupling of hydrogens at positions 2 and 1.

Finally, controlled acetylation of the isolated 2α , 3α -diol yields a monoacetate, m.p. 231-234°, the n.m.r. spectrum of which shows a doublet (1 3) at δ 3.5, and a broad multiplet near δ 5.3. Such signals, and those due to methyl groups, are in agreement with a structure (Id) which results from selective acetylation of the equatorial 2α hydroxy-group.

We thank Dr. L. Tőkés of Syntex Research, Palo Alto, California, for the mass spectra.

(Received, January 15th, 1970; Com. 063.)

† Signal partly buried under 12-H signal, $w_{\frac{1}{2}}$ of which is ca. 8 Hz.

¹ D. C. de Jongh and K. Biemann, J. Amer. Chem. Soc., 1964, 86, 67. ² H. Budzikiewicz, J. M. Wilson, and C. Djerassi, J. Amer. Chem. Soc., 1963, 85, 3688; J. Karlinger and C. Djerassi, J. Org. Chem., 1966, **31**, 1945.

- ³ H. T. Cheung and D. G. Williamson, Tetrahedron, 1969, 25, 119, and references cited therein.

⁴ C. Djerassi, D. B. Thomas, A. L. Livingston, and C. R. Thompson, J. Amer. Chem. Soc., 1957, 79, 5292.
⁵ R. Tschesche, E. Henckel, and G. Snatzke, Annalen, 1964, 676, 175.
⁶ A. Hassner and C. Heathcock, J. Org. Chem., 1964, 29, 1350.
⁷ L. M. Jackman and S. Sternhell, "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry," 2nd edn., Pergamon, London, 1969.

- ⁸ F. Hemmert, A. Lablache-Combier, B. Lacoume, and J. Levisalles, Bull, Soc. chim. France, 1966, 982. ⁹ B. Tursch, R. Savoir, R. Ottinger, and G. Chiurdoglu, Tetrahedron Letters, 1967, 539.